Defective interfering influenza virus confers only short-lived protection against influenza virus disease: Evidence for a role for adaptive immunity in DI virus-mediated protection in vivo
نویسندگان
چکیده
We have shown earlier that a single dose of cloned defective interfering (DI) influenza A virus strongly protects mice from disease following a lethal challenge with different subtypes of influenza A virus. These animals suffered no clinical disease but experienced a subclinical infection which rendered them immune to reinfection with the same challenge virus. However, little is known about how DI virus achieves such protection. Here we investigated the role of adaptive immunity in DI virus-mediated protection using severe-combined immunodeficient (SCID) mice, which lack competence in both B- and T-cell compartments but retain NK cell activity. SCID mice which were treated with DI virus and infected with influenza virus initially remained completely well, while infected litter mates that received UV-inactivated DI virus became seriously ill and died. However, after 10 days of good health, the DI virus-protected SCID mice developed a clinical disease that was similar, but not completely identical, to the acute influenza disease. Disease was delayed longer by a higher dose of DI virus. We excluded the possibilities that the DI virus load in the lungs had declined, that the DI RNA sequence had changed so that it no longer interfered with the infectious genome, or that infectious virus had become resistant to the DI virus. These data show that while DI virus provides full protection from the acute disease in the absence of adaptive immunity, that same immunity is essential for clearing the infection. This indicates that the conventional view that DI virus-induced protection is mediated solely by competition for replication with the challenge virus is incorrect for influenza virus.
منابع مشابه
A novel broad-spectrum treatment for respiratory virus infections: influenza-based defective interfering virus provides protection against pneumovirus infection in vivo.
Respiratory viruses represent a major clinical burden. Few vaccines and antivirals are available, and the rapid appearance of resistant viruses is a cause for concern. We have developed a novel approach which exploits defective viruses (defective interfering (DI) or protecting viruses). These are naturally occurring deletion mutants which are replication-deficient and multiply only when coinfec...
متن کاملProtective Immunity in Mice Following Immunization with the Cochleate-Based Subunit Influenza Vaccines
High morbidity and mortality of influenza virus infection makes it an important disease world-wide. Mouse is a very well-studied animal model for this disease with similar manifestation to human disease. It would be desirable to induce mucosal as well as circulating immune responses to obtain protection from infection and to decrease the spread of the virus. Cell mediated immunity (proliferativ...
متن کاملProtection against influenza A virus by memory CD8 T cells requires reactivation by bone marrow-derived dendritic cells.
Influenza A virus is the causative agent of an acute inflammatory disease of the airway. Although Abs can prevent infection, disease and death can be prevented by T cell-mediated immunity. Recently, we showed that protection against lethal influenza A (PR8/34) virus infection is mediated by central memory CD8 T cells (T(CM)). In this study, using relB(-/-) mice we began to investigate the role ...
متن کاملIn vitro and in vivo effects of Peganum harmala L. seeds extract against influenza A virus
Objective: Influenza A virus infections are still a major health problem and the choices available for the control and treatment of the disease are limited. This research evaluated in vitro and in vivo antiviral effects of Peganum harmala L. seeds (PHS) extract against influenza A virus. Materials and Methods: In this research, in vitro anti-influenza A virus activity of the extract was assesse...
متن کاملImmunologic Evaluation of DNA Vaccine Encoding Influenza Virus M2 Gene in Type A- Influenza Mice Model
Abstract Background and Objective: The M2 gene expressing the conserved protein in influenza virus can be used to make a single-dose vaccine with permanent immunity. Material and Methods: The mice were allocated to one case group immunized with pcDNA3-M2 and two control groups with pcDNA and PBS, in three dozes with interval of two weeks. Two weeks after the last injection, Cellular imm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 29 شماره
صفحات -
تاریخ انتشار 2011